منابع مشابه
Molecular doping and band-gap opening of bilayer graphene.
The ability to induce an energy band gap in bilayer graphene is an important development in graphene science and opens up potential applications in electronics and photonics. Here we report the emergence of permanent electronic and optical band gaps in bilayer graphene upon adsorption of π electron containing molecules. Adsorption of n- or p-type dopant molecules on one layer results in an asym...
متن کاملElectronic Structures, Bonding Configurations, and Band-Gap-Opening Properties of Graphene Binding with Low-Concentration Fluorine
To better understand the effects of low-level fluorine in graphene-based sensors, first-principles density functional theory (DFT) with van der Waals dispersion interactions has been employed to investigate the structure and impact of fluorine defects on the electrical properties of single-layer graphene films. The results show that both graphite-2 H and graphene have zero band gaps. When fluor...
متن کاملUniaxial strain on graphene: Raman spectroscopy study and band-gap opening.
Graphene was deposited on a transparent and flexible substrate, and tensile strain up to approximately 0.8% was loaded by stretching the substrate in one direction. Raman spectra of strained graphene show significant red shifts of 2D and G band (-27.8 and -14.2 cm(-1) per 1% strain, respectively) because of the elongation of the carbon-carbon bonds. This indicates that uniaxial strain has been ...
متن کاملLarge band gap opening between graphene Dirac cones induced by Na adsorption onto an Ir superlattice.
We investigate the effects of Na adsorption on the electronic structure of bare and Ir cluster superlattice-covered epitaxial graphene on Ir(111) using angle-resolved photoemission spectroscopy and scanning tunneling microscopy. At Na saturation coverage, a massive charge migration from sodium atoms to graphene raises the graphene Fermi level by ~1.4 eV relative to its neutrality point. We find...
متن کاملBand Gap Opening of Graphene by Noncovalent π-π Interaction with Porphyrins
Graphene has been recognized as a promising 2D material with many new properties. However, pristine graphene is gapless which hinders its direct application towards graphene-based semiconducting devices. Recently, various ways have been proposed to overcome this problem. In this study, we report a robust method to open a gap in graphene via noncovalent functionalization with porphyrin molecules...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nanoscience and Nanotechnology
سال: 2011
ISSN: 1533-4880,1533-4899
DOI: 10.1166/jnn.2011.5001